Efficiency of
$$\gamma = \frac{T_1 - T_2}{T_1}$$
(anot engine $\gamma = \frac{T_1 - T_2}{T_1}$

- * When $T_1 = T_2$ them $\eta = \frac{0}{T_1} = 0$. i.e. no work is done by Carnot engine.
- * When $T_2 = 0$ K them $\gamma = \frac{T_1 0}{T_1} = 1$ i.e. Carnot Engine is 100% efficient

But it is not possible to reach absolute zero temp i.e. OK (-273°C). So, we can not form 100 % efficient engine.

9. A Cannot engine is working b/w temp. Trange 40°C to 80°C. Calculate γ . $T_1 = 80^{\circ}C = 353^{\circ}K$ $T_2 = 40^{\circ}C = 313^{\circ}K$

$$N = \frac{1}{1 - 12} = \frac{353 - 313) k}{353 k} \times 100 = \frac{353}{40 \times 100} = 11.33 \%$$

Entropy is nandomness of the system. Entropy $(S) = \frac{q}{T}$ $\Rightarrow dS = \frac{dq}{T}$ Unit = Joule/K (SI)

Cal/K on eng/K (CGS)

Entropy is a state function. (Trail - state)

1-mole $\Delta S = C_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{V_2}{V_1}\right)$ $\Delta S = C_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{P_1}{P_2}\right)$ $\Delta S = C_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{P_1}{P_2}\right)$ We have a dead gan is expanded isothermally from S lit to 20 lit at 30°C. temp. Calculate Change of entropy.

Am :- We know $\Delta S = C_V \ln \left(\frac{T_2}{T_1}\right) + R \ln \left(\frac{V_2}{V_1}\right)$ For isothermal proces $T_1 = T_2$ $\Delta S = R \ln \left(\frac{V_2}{V_1}\right)$ for I mole ideal gan.

For 2 moles of an idal gas $\Delta S = 2 R \ln \left(\frac{V_2}{V_1}\right) = 2 \times 8 \cdot 314 \times \ln \left(\frac{20}{5}\right)$ $\Delta S = 23.051$ Joule/K.

9

1 gm-molecule of an ideal goo is heated from 25°C to 125°C at constant pressure. If the value of $Cp = \frac{5}{2}R$ them calculate entropy change.

Am

We know, $\Delta S = C_p \ln\left(\frac{T_2}{T_1}\right) + R \ln\left(\frac{P_1}{P_2}\right)$ At comst. pressure $P_1 = P_2$; i.e. $R \ln\left(\frac{P_1}{P_2}\right) = 0$ $T_1 = 25^{\circ}C = 278 \text{K}$ $T_2 = |25^{\circ}C| = 398 \text{K}$

: Emtropy chang for 1 gm-molecules

of ideal gas is

$$\Delta S = C_p \ln \left(\frac{T_2}{T_1}\right)$$

$$= \frac{5}{2} R \ln \left(\frac{398}{298}\right)$$

$$= \frac{5}{2} \times 1.98 \times \ln \left(\frac{398}{298}\right)$$

$$= \frac{5}{2} \times 1.4323 \text{ Cal} \text{ K}$$